Solenoid valve winding machine|Solenoid valve coil precision winding machine|Precision winding machine

Solenoid valve winding machine|Solenoid valve coil precision winding machine|Precision winding machine

heading_title

For precision electromagnetic coils, there are usually many turns, which require neat arrangement, and the process design is also divided into two types with and without skeleton.


        For precision electromagnetic coils, there are usually many turns, which require neat arrangement, and the process design is also divided into two types with and without skeleton.

For frameless coils, steel molds are required to form.Relatively speaking, the precision of steel winding molds is better controlled.

        Under the existing solenoid valve winding machine processing technology, it is not difficult to achieve a size of 0.01mm on both sides of the steel winding mold, and the parallelism on both sides is 0.01

mm is also not difficult. However, if there is no wire frame mold steel wire winding mold, there will be two new problems, one is forming, the winding is completed

After the final removal, there is no skeleton.To prevent the coil from being scattered, it is necessary to use an alcohol fuse or a hot fuse. These two materials

Compared with the ordinary wire, the cost is not small. The second problem is demolding, a thicker one, and more windings

It's quite laborious to remove the coil from a steel mold, it's not like a coil with a small coin, and

What's more, this winding process itself has viscous materials that are melted or hot melted.

        So people also use the second solenoid valve winding machine process, a precision electromagnetic coil with a skeleton.Similarly, this is not a very good process route.

The skeleton is formed by an injection mold, and there are inevitably some problems with injection products, such as deformation, shrinkage, dimensional consistency, etc.

        However, the advantages of this solenoid valve winding machine are also obvious, that is, it is easy to demold and form. It is only because of the poor consistency of the size of the skeleton.

Higher requirements are put forward, the key point is that wire, skeleton structure, skeleton mold, winding tooling, winding machine, every link

Will affect the quality of the winding, in this case, according to our own advantages, we provide a complete service according to customer needs

Including skeleton design, mold structure design, tooling design, and winding machine. In the past successful cooperation, this way of service

Great advantages.

        

Related Post

     REPOSAL® releases layer-wound high-voltage package full-automatic interlayer insulation winding machine

REPOSAL® releases layer-wound high-voltage package full-automatic interlayer insulation winding machine

REPOSAL® releases layer-wound high-voltage package full-automatic interlayer insulation winding machine

  Suzhou Xiepu Electronic Machinery Equipment Co., Ltd. successfully released the SP-D102M7 model of layer-wound high-voltage package automatic interlayer insulation winding machine-this model greatly improves the winding efficiency of layer-wound high-voltage package coils, and the coil is consistent Sex. The REPOSAL® winding machine reduces the winding cost of the layer-wound high-voltage package. In the new model, it has added a compact insulation belt automatic cutting mechanism, and high-quality solutions such as dynamic balance performance after multiple skeletons are wound.

Enclosed rectangular transformer winding machine-thin wire reciprocating

Enclosed rectangular transformer winding machine-thin wire reciprocating

Enclosed rectangular transformer coil with a thin diameter of 0.12mm, which requires fast winding speed and convenient product loading and unloading.

        

          

Horseshoe hollow cup motor coil and winding machine

Horseshoe hollow cup motor coil and winding machine

Horseshoe hollow cup motor coil and winding machine

            In recent years, China has paid more and more attention to hollow cup motor and automatic winding technology, and has made good progress and breakthroughs in the research and development and manufacturing of winding machine equipment.

One of the key reasons for the impact on the performance of the motor is the rotor coil in the motor, the rotor in the hollow cup motor has no iron core, small inertia, excellent functionality and a wide range of applications. In addition, in the research and development of coil winding equipment, the saddle-shaped coil arrangement is regular, and the utilization efficiency of magnets is high.

                    

           Compared with the old traditional motor with an iron core, the energy conversion efficiency is significantly higher than the latter, and the reaction speed will be much faster, and the hollow cup motor has high efficiency, fast response speed and stable performance. Because the hollow cup motor has no lag, additional electromagnetic interference is low, very high motor speed can be achieved, and the speed setting is sensitive at high speed, so it has relatively stable and stable performance. In addition, the energy density of the hollow cup motor is much greater than that of other motors, and the weight will be much less than that of an iron core motor with the same power.

           Now according to the forming method of the coil, in the hollow cup motor coil, its production technology can be roughly divided into two process routes: winding production technology and one molding production technology.

           Compared with the two methods, the first winding production technology is more complex, and the efficiency of winding the coil is relatively low. In order to improve the winding efficiency of coil production, the winding machine can be added to the production process of one molding. According to the hollow cup coil shape and winding method, the common hollow cup winding method can be divided into three kinds of parallel straight winding, saddle winding and oblique winding. The first parallel straight winding is generally used for hollow cup motor winding with relatively few turns. The last two are the two coil winding processes commonly used by the relatively advanced hollow cup motor manufacturers abroad.

U-shaped core winding machine

U-shaped core winding machine

Transformer coil winding machine

  Stable, high-speed and safe U-shaped core coil winding machine

The U-shaped coil winding machine is suitable for the winding of the bottom edge of the U-shaped core.Usually, the center of the U-shaped core is difficult to coincide with the rotation axis of the winding machine, resulting in a large vibration of the winding machine. , Affecting efficiency.

This type of winding machine developed by our company does not rotate the U-shaped iron core, only reciprocates, and rotates around the product to reduce vibration and improve efficiency.

      With the optimized clamping method, it only takes 2 seconds to complete the clamping.

      Therefore, the rotating parts of this type of machine have a large diameter and a high speed.There are similar machines on the market, and the larger ones do not have a protective cover. Safety accidents often occur.This machine of the company has a protective cover design.

REPOSAL successfully developed string winding machine

REPOSAL successfully developed string winding machine

   REPOSAL  takes the string winding machine as the research object and adopts the modal analysis method. Firstly, the vibration principle and the movement principle of the winding mechanism of the small string winding machine are discussed in theory. Based on the principle analysis, the vibration analysis of the ADAMS model of the small copper wire winding mechanism to study the vibration damping characteristics between the roller shaft and the frame is carried out respectively, and the wire winding mechanism of the string winding machine is made using ANSYS software. Modal analysis was carried out for normal operation. Through analysis, the vibration characteristics of the winding mechanism of the string winding machine under normal working conditions are obtained respectively to optimize the vibration damping measures of the winding mechanism. At the same time, the mechanical characteristics of the thin wire and CNC under the normal working state of the CNC winding mechanism are analyzed. , Optimizing the feasibility of applying the CNC cable winding mechanism to the string winding machine cable winding mechanism.

Tension control of precision rectangular coil winding machine

Tension control of precision rectangular coil winding machine

      This article introduces the test of designing tension control system to minimize the change of tension. Perform theoretical analysis on simulation. The simulation results show that the tension of the enameled wire is frequently fluctuated due to the length change caused by the speed change. The model's tension sensor verifies the prediction. The key to successful design is to eliminate changes in tension. We added a tension system that includes a high-speed cylinder to replace the traditional wool felt and spring mechanism. The simulation results showed that the new prototype system almost doubled the winding speed and the ability to withstand tension fluctuations.

          



Keywords: tension control, winding machine, rectangular coil, precision winding machine.


One. introduction


      Countless transformers are produced every year. Together with power plants, substations and power lines, distribution transformers provide electricity for businesses and residential buildings across the country. Transformer manufacturing involves the production of winding coils. These coils are usually made of an insulating paper layer sandwiched between a pair of copper wires. They are usually round or rectangular.


      A consistent tension must be maintained on the coil windings. The shape of the coil has a major influence on the tension applied by the tension. For a circular coil, the tension does not change significantly, but a rectangular coil is different. As a rectangular coil, the tension changes sharply with the position of the drop point. As shown in the figure, this change in speed is caused by the changing length of the line. In the case of a round coil, this is not a problem, because the contact points of the wires on the coil are fixed.